Generating a Random Collection of Discrete Joint Probability Distributions Subject to Partial Information
نویسندگان
چکیده
In this paper, we develop a practical and flexible methodology for generating a random collection of discrete joint probability distributions, subject to a specified information set, which can be expressed as a set of linear constraints (e.g., marginal assessments, moments, or pairwise correlations). Our approach begins with the construction of a polytope using this set of linear constraints. This polytope defines the set of all joint distributions that match the given information; we refer to this set as the “truth set.” We then implement a Monte Carlo procedure, the Hit-andRun algorithm, to sample points uniformly from the truth set. Each sampled point is a joint distribution that matches the specified information. We provide guidelines to determine the quality of this sampled collection. The sampled points can be used to solve optimization models and to simulate systems under different uncertainty scenarios.
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملMODELLING AND ANALYSIS OF A DISCRETE-TIME PRIORITY QUEUING COMPUTER NETWORK WITH PRIORITY JUMPS USING PROBABILITY GENERATING FUNCTIONS
Priority queues have a great importance in the study of computer communication networks in which different types of traffic require different quality of service standards. The discrete-time non-preemptive priority queuing model with priority jumps is proposed in this paper. On the basis of probability generating functions mean system contents and mean queuing delay characteristics are obtained....
متن کاملFUZZY INFORMATION AND STOCHASTICS
In applications there occur different forms of uncertainty. The twomost important types are randomness (stochastic variability) and imprecision(fuzziness). In modelling, the dominating concept to describe uncertainty isusing stochastic models which are based on probability. However, fuzzinessis not stochastic in nature and therefore it is not considered in probabilisticmodels.Since many years t...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کامل